Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-1974874

ABSTRACT

Since December 2019, the novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected ~435 million people and caused ~6 million related deaths as of March 2022. To combat COVID-19, there have been many attempts to repurpose FDA-approved drugs or revive old drugs. However, many of the current treatment options have been known to cause adverse drug reactions. We employed a population-based drug screening platform using 13 human leukocyte antigen (HLA) homozygous human induced pluripotent cell (iPSC) lines to assess the cardiotoxicity and neurotoxicity of the first line of anti-COVID-19 drugs. We also infected iPSC-derived cells to understand the viral infection of cardiomyocytes and neurons. We found that iPSC-derived cardiomyocytes express the ACE2 receptor which correlated with a higher infection of the SARS-CoV-2 virus (r = 0.86). However, we were unable to detect ACE2 expression in neurons which correlated with a low infection rate. We then assessed the toxicity of anti-COVID-19 drugs and identified two cardiotoxic compounds (remdesivir and arbidol) and four neurotoxic compounds (arbidol, remdesivir, hydroxychloroquine, and chloroquine). These data show that this platform can quickly and easily be employed to further our understanding of cell-specific infection and identify drug toxicity of potential treatment options helping clinicians better decide on treatment options.

2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: covidwho-1033603

ABSTRACT

The outbreak of COVID-19 caused by SARS-CoV-2 has resulted in more than 50 million confirmed cases and over 1 million deaths worldwide as of November 2020. Currently, there are no effective antivirals approved by the Food and Drug Administration to contain this pandemic except the antiviral agent remdesivir. In addition, the trimeric spike protein on the viral surface is highly glycosylated and almost 200,000 variants with mutations at more than 1,000 positions in its 1,273 amino acid sequence were reported, posing a major challenge in the development of antibodies and vaccines. It is therefore urgently needed to have alternative and timely treatments for the disease. In this study, we used a cell-based infection assay to screen more than 3,000 agents used in humans and animals, including 2,855 small molecules and 190 traditional herbal medicines, and identified 15 active small molecules in concentrations ranging from 0.1 nM to 50 µM. Two enzymatic assays, along with molecular modeling, were then developed to confirm those targeting the virus 3CL protease and the RNA-dependent RNA polymerase. Several water extracts of herbal medicines were active in the cell-based assay and could be further developed as plant-derived anti-SARS-CoV-2 agents. Some of the active compounds identified in the screen were further tested in vivo, and it was found that mefloquine, nelfinavir, and extracts of Ganoderma lucidum (RF3), Perilla frutescens, and Mentha haplocalyx were effective in a challenge study using hamsters as disease model.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Adult , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/virology , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Drug Repositioning/methods , Female , Humans , Male , Pandemics , Plant Extracts/pharmacology , SARS-CoV-2/genetics , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL